Circadian Factor BMAL1 in Histaminergic Neurons Regulates Sleep Architecture
نویسندگان
چکیده
Circadian clocks allow anticipation of daily environmental changes. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body. Although some peripheral clocks have established roles, it is unclear what local brain clocks do. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN.
منابع مشابه
Circadian clock proteins control adaptation to novel environment and memory formation
Deficiency of the transcription factor BMAL1, a core component of the circadian clock, results in an accelerated aging phenotype in mice. The circadian clock regulates many physiological processes and was recently implicated in control of brain-based activities, such as memory formation and the regulation of emotions. Aging is accompanied by the decline in brain physiology, particularly decline...
متن کاملBmal1 function in skeletal muscle regulates sleep
Sleep loss can severely impair the ability to perform, yet the ability to recover from sleep loss is not well understood. Sleep regulatory processes are assumed to lie exclusively within the brain mainly due to the strong behavioral manifestations of sleep. Whole-body knockout of the circadian clock gene Bmal1 in mice affects several aspects of sleep, however, the cells/tissues responsible are ...
متن کاملThe Circadian Protein BMAL1 Regulates Translation in Response to S6K1-Mediated Phosphorylation
The circadian timing system synchronizes cellular function by coordinating rhythmic transcription via a transcription-translational feedback loop. How the circadian system regulates gene expression at the translational level remains a mystery. Here, we show that the key circadian transcription factor BMAL1 associates with the translational machinery in the cytosol and promotes protein synthesis...
متن کاملUbe3a Imprinting Impairs Circadian Robustness in Angelman Syndrome Models
BACKGROUND The paternal allele of Ube3a is silenced by imprinting in neurons, and Angelman syndrome (AS) is a disorder arising from a deletion or mutation of the maternal Ube3a allele, which thereby eliminates Ube3a neuronal expression. Sleep disorders such as short sleep duration and increased sleep onset latency are very common in AS. RESULTS We found a unique link between neuronal imprinti...
متن کاملCircadian clock proteins regulate neuronal redox homeostasis and neurodegeneration.
Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activat...
متن کامل